addressing mode - определение. Что такое addressing mode
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое addressing mode - определение

ASPECT OF THE INSTRUCTION SET ARCHITECTURE IN MOST CENTRAL PROCESSING UNIT DESIGNS
Addressing modes; Indirect word; Address mode; Indirect address; Absolute coding; Absolute and relative coding; Indexed addressing; Indirect addressing; Relative coding; Effective address; Load Effective Address; Push Effective Address; Indirection bit; Indirection (computing); Special addressing modes for implementation of stacks; Conditional execution; Register indirect; Direct addressing; Address modes; Direct-addressing; Direct address (computing)
Найдено результатов: 828
addressing mode         
1. <processor, programming> One of a set of methods for specifying the operand(s) for a machine code instruction. Different processors vary greatly in the number of addressing modes they provide. The more complex modes described below can usually be replaced with a short sequence of instructions using only simpler modes. The most common modes are "register" - the operand is stored in a specified register; "absolute" - the operand is stored at a specified memory address; and "immediate" - the operand is contained within the instruction. Most processors also have indirect addressing modes, e.g. "register indirect", "memory indirect" where the specified register or memory location does not contain the operand but contains its address, known as the "effective address". For an absolute addressing mode, the effective address is contained within the instruction. Indirect addressing modes often have options for pre- or post- increment or decrement, meaning that the register or memory location containing the effective address is incremented or decremented by some amount (either fixed or also specified in the instruction), either before or after the instruction is executed. These are very useful for stacks and for accessing blocks of data. Other variations form the effective address by adding together one or more registers and one or more constants which may themselves be direct or indirect. Such complex addressing modes are designed to support access to multidimensional arrays and arrays of data structures. The addressing mode may be "implicit" - the location of the operand is obvious from the particular instruction. This would be the case for an instruction that modified a particular control register in the CPU or, in a stack based processor where operands are always on the top of the stack. 2. In IBM System 370/XA the addressing mode bit controls the size of the effective address generated. When this bit is zero, the CPU is in the 24-bit addressing mode, and 24 bit instruction and operand effective addresses are generated. When this bit is one, the CPU is in the 31-bit addressing mode, and 31-bit instruction and operand effective addresses are generated. ["IBM System/370 Extended Architecture Principles of Operation", Chapter 5., 'Address Generation', BiModal Addressing]. (1995-03-30)
Addressing mode         
Addressing modes are an aspect of the instruction set architecture in most central processing unit (CPU) designs. The various addressing modes that are defined in a given instruction set architecture define how the machine language instructions in that architecture identify the operand(s) of each instruction.
indirect address         
<processor> An addressing mode found in many processors' instruction sets where the instruction contains the address of a memory location which contains the address of the operand (the "effective address") or specifies a register which contains the effective address. In the first case (indirection via memory), accessing the operand requires two memory accesses - one to fetch the effective address and another to read or write the actual operand. Register indirect addressing requires only one memory access. An indirect address may be indicated in assembly language by an operand in parentheses, e.g. in Motorola 68000 assembly MOV D0,(A0) writes the contents of register D0 to the location pointed to by the address in register A0. Indirect addressing is often combined with pre- or post- increment or decrement addressing, allowing the address of the operand to be increased or decreased by one (or some specified number) either before or after using it. (1994-11-07)
indirect addressing         
Addressing scheme         
SCHEME TO SET OR MAINTAIN THE STATE OF A PIXEL IN A DISPLAY DEVICE
There are three different addressing schemes for display devices: direct, matrix, and raster. The purpose of each scheme is to set (or maintain) the state of a pixel to either black/white or, more commonly, a grayscale level.
Airplane mode         
  • Airplane mode icon
  • Airplane mode in a laptop keyboard
  • Smartphone with airplane mode turned on
SETTING AVAILABLE ON MANY ELECTRONIC DEVICES
Flight Mode; Offline Mode; Flight mode; Airplane Mode; Plane mode; Aeroplane mode; Aeroplane Mode
Airplane mode (also known as aeroplane mode, flight mode, offline mode, or standalone mode) is a setting available on smartphones and other portable devices. When activated, this mode suspends the device's radio-frequency (RF) signal transmission technologies (i.
Unreal mode         
VARIANT OF REAL MODE IN X86 COMPUTING
Big real mode; Flat real mode; Paged real mode; Huge real mode; 32-bit real mode; Big unreal mode; Huge unreal mode; Real big mode; Voodoo Memory Manager; Voodoo Memory Management; Voodoo Memory Management System; Real Big Mode; Big Real Mode; Flat Real Mode; HugeRealMode; HugeRealMode driver; Pseudo real execution mode; Unreal execution mode; 386 real big mode; 386 Real Big Mode; 386 big mode; 386 Big Mode; Real-mode flat memory model; Pseudo-real execution mode; Pseudo real mode; Pseudo-real mode; Unreal Mode
In x86 computing, unreal mode, also big real mode, huge real mode, flat real mode, or voodoo mode is a variant of real mode, in which one or more segment descriptors has been loaded with non-standard values, like 32-bit limits allowing access to the entire memory. Contrary to its name, it is not a separate addressing mode that the x86 processors can operate in.
Mode (music)         
  • scale]]
  • subtonium]]'' (tone below the final).
  • The [[introit]] ''Jubilate Deo'', from which [[Jubilate Sunday]] gets its name, is in Mode&nbsp;8.
  • Interval sequences for each of the modern modes, showing the relationship between the modes as a shifted grid of intervals.
  • p=255}}</ref>
TYPE OF MUSICAL SCALE
Musical modes; Greek mode; Modal music; Properties of musical modes; Ecclesiastical mode; Eastern modes; Modes musical; Modes (music); Modality (music); Modal scale; Musical mode
In music theory, the term mode or modus is used in a number of distinct senses, depending on context.
Protected mode         
  • Virtual segments of 80286
  • Paging (on Intel 80386) with page size of 4K
  • An Intel 80386 microprocessor
  • Example of privilege ring usage in an operating system using all rings
  • Common method of using paging to create a virtual address space
OPERATIONAL MODE OF X86-COMPATIBLE CENTRAL PROCESSING UNITS
Pmode; Protected Virtual Address Mode; Protected Mode; Protected virtual address mode; Protected-mode; 286 protected mode
In computing, protected mode, also called protected virtual address mode, is an operational mode of x86-compatible central processing units (CPUs). It allows system software to use features such as virtual memory, paging and safe multi-tasking designed to increase an operating system's control over application software.
protected mode         
  • Virtual segments of 80286
  • Paging (on Intel 80386) with page size of 4K
  • An Intel 80386 microprocessor
  • Example of privilege ring usage in an operating system using all rings
  • Common method of using paging to create a virtual address space
OPERATIONAL MODE OF X86-COMPATIBLE CENTRAL PROCESSING UNITS
Pmode; Protected Virtual Address Mode; Protected Mode; Protected virtual address mode; Protected-mode; 286 protected mode
An operating mode of Intel 80x86 processors. The opposite of real mode. The Intel 8088, Intel 8086, Intel 80188 and Intel 80186 had only real mode, processors beginning with the Intel 80286 feature a second mode called protected mode. In real mode, addresses are generated by adding an address offset to the value of a segment register shifted left four bits. As the segment register and address offset are 16 bits long this results in a 20-bit address. This is the origin of the one megabyte (2^20) limit in real mode. There are 4 segment registers on processors before the {Intel 80386}. The 80386 introduced two more segment registers. Which segment register is used depends on the instruction, on the addressing mode and of an optional instruction prefix which selects the segment register explicitly. In protected mode, the segment registers contain an index into a table of segment descriptors. Each segment descriptor contains the start address of the segment, to which the offset is added to generate the address. In addition, the segment descriptor contains memory protection information. This includes an offset limit and bits for write and read permission. This allows the processor to prevent memory accesses to certain data. The operating system can use this to protect different processes' memory from each other, hence the name "protected mode". While the standard register set belongs to the CPU, the segment registers lie "at the boundary" between the CPU and MMU. Each time a new value is loaded into a segment register while in protected mode, the corresponding descriptor is loaded into a descriptor cache in the (Segment-)MMU. On processors before the Pentium this takes longer than just loading the segment register in real mode. Addresses generated by the CPU (which are segment offsets) are passed to the MMU to be checked against the limit in the segment descriptor and are there added to the segment base address in the descriptor to form a linear address. On a 80386 or later, the linear address is further processed by the paged MMU before the result (the physical address) appears on the chip's address pins. The 80286 doesn't have a paged MMU so the linear address is output directly as the physical address. The paged MMU allows for arbitrary remapping of four klilobyte memory blocks (pages) through a translation table stored in memory. A few entries of this table are cached in the MMU's Translation Lookaside Buffer to avoid excessive memory accesses. After processor reset, all processors start in real mode. Protected mode has to be enabled by software. On the 80286 there exists no documented way back to real mode apart from resetting the processor. Later processors allow switching back to real mode by software. Software which has been written or compiled to run in protected mode must only use segment register values given to it by the operating system. Unfortunately, most application code for MS-DOS, written before the 286, will fail in protected mode because it assumes real mode addressing and writes arbitrary values to segment registers, e.g. in order to perform address calculations. Such use of segment registers is only really necessary with data structures that are larger than 64 kilobytes and thus don't fit into a single segment. This is usually dealt with by the huge memory model in compilers. In this model, compilers generate address arithmetic involving segment registers. A solution which is portable to protected mode with almost the same efficiency would involve using a table of segments instead of calculating new segment register values ad hoc. To ease the transition to protected mode, Intel 80386 and later processors provide "virtual 86 mode". (1995-03-29)

Википедия

Addressing mode

Addressing modes are an aspect of the instruction set architecture in most central processing unit (CPU) designs. The various addressing modes that are defined in a given instruction set architecture define how the machine language instructions in that architecture identify the operand(s) of each instruction. An addressing mode specifies how to calculate the effective memory address of an operand by using information held in registers and/or constants contained within a machine instruction or elsewhere.

In computer programming, addressing modes are primarily of interest to those who write in assembly languages and to compiler writers. For a related concept see orthogonal instruction set which deals with the ability of any instruction to use any addressing mode.